Microfungi from soils оf Heiss Island (Franz Joseph Land)


I. Yu. Кirtsideli


DOI: https://doi.org/10.31111/nsnr/2015.49.151


Annotation

The complexes of soil microfungi of Heiss Island (Franz Joseph Land) in natural (upland) coenoses and coenoses affected by anthropogenic pollution were studied. Total 39 microfungi species were identified. Most species belong to ascomycetous anamorphic fungi. Most isolates are represented by species of Acremonium, Cadophora, Cladosporium, Geomyces, Mortierella, Phialophora, Phoma and Thelebolus and attributed not to psychrophilic strains, but to psychrotrophic ones that can grow in a wide range of temperatures. Low number of colony-forming units (from 50 to 1200 CFU per 1 g of soil) and limited species composition are typical of natural coenoses of polar desert. The soil mycobiota structure was changed under the influence of anthropogenic factors.


Key words: soil microfungi, polar desert, anthropogenic influence, adaptation, invasive species


Section: Fungi


How to cite

Кirtsideli I. Yu. 2015. Microfungi from soils оf Heiss Island (Franz Joseph Land). Novosti Sist. Nizsh. Rast. 49: 151–160. https://doi.org/10.31111/nsnr/2015.49.151


References

Adams B. J., Bardgett R. D., Ayres E., Wall D. H., Aislabie J. et al. 2006. Diversity and distribution of Victoria Land biota. Soil Biol. Biochem. 38: 3003–3018. https://doi.org/10.1016/j.soilbio.2006.04.030

Barakah F. N. I. 1992. Observations on the oligotrophic growth of fungi. Ph. D. Thesis, University of Sheffield, UK.

Bergero R., Girlanda M., Varese G. C., Intili D., Luppi A. M. 1999. Psychrooligotrophic fungi from Arctic soils of Franz Joseph Land. Polar Biol. 21 (6): 361–368. https://doi.org/10.1007/s003000050374

Chilingarov A. N. 2009. Оcherki po geografii Arktiki [Essays on the geography of the Arctic]. Moscow: 56 p. (In Russ.).

Dryupin V. G. 2004. Zemlya Frantsa Iosifa [Franz Joseph Land]. Archangelsk: 135 p. (in Russ.).

Index Fungorum. 2008–2014. http://www.indexfungorum.org (Accessed 30.12.2014).

Gunde-Cimerman N., Sonjak S., Zalar P., Frisvad J. C., Diderichsen B., Plemenita A. 2003. Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Physics and Chemistry of the Earth. 28: 1273–1278. https://doi.org/10.1016/j.pce.2003.08.056

Govorukha L. S. 1968. Landscape and geographic characteristics of Franz Josef Land. Тrudy ААNII. Problemy polyarnoy geografii. 285: 86–117. (In Russ.).

Govorukha L. S. 1970. Zemlya Frantsa Iosifa [Franz Joseph Land]. Moscow: 328–359. (In Russ.).

Held B. W., Jurgens J. A., Arenz B. E., Duncan S. M., Farrell R. L., Blanchette R. A. 2005. Environmental factors influencing microbial growth inside the historic huts of Ross Island, Antarctica. Int. Biodeterior. Biodegrad. 55: 45–53. https://doi.org/10.1016/j.ibiod.2004.06.011

Hsiao C. R., Huang L., Bouchara J. P., Barton R., Li H. C., Chang T. C. 2005. Identification of medically important molds by an oligonucleotide array. J. Clin. Microbiol. 43 (8): 3760–3768. https://doi.org/10.1128/JCM.43.8.3760-3768.2005

Kerry E. 1990. Efects of temperature on growth rates of fungi from subantarctic Macquarie Island and Casey, Antarctica. Polar Biol. 10 (5): 293–299. https://doi.org/10.1007/BF00238428

Kirtsideli I. Yu., Vlasov D. Yu., Abakumov E .V., Gilichinsky D. A. 2010. Microfungi in scree sois of coastal Antarctica: diversity and fermentative activities. Mikol. Fitopatol. 44 (5): 387–397. (In Russ. with Engl. abstract).

Kurakov A. V. 2001. Metody vydeleniya i kharakteristiki kompleksov mikroskopicheskikh gribov nazemnykh ekosistem [Methods of isolation and characterization of complexes of microscopic fungi in terrestrial ecosystems]. Moscow: 92 p. (In Russ.).

Kurtzman C. P., Robnett C. J. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek J. Microbiol. Serol. 73 (4): 331−371. https://doi.org/10.1023/A:1001761008817

Li H. C., Bouchara J. P., Hsu M. M., Barton R., Chang T. C. 2007. Identification of dermatophytes by an oligonucleotide array. J. Clin. Microbiol. 45 (10): 3160−3166. https://doi.org/10.1128/JCM.00829-07

Megarran E. 1992. Ekologicheskoe raznoobrazie i ego izmerenie [Ecological diversity and its measurement]. Moscow: 184 p. (In Russ.).

Parkinson S. M., Wainwright M., Killham K. 1989. Observations on oligotrophic growth of fungi on silica gel. Mycol. Res. 93: 529–534. https://doi.org/10.1016/S0953-7562(89)80048-6

Tribe H. T., Mabadeje S. A. 1972. Growth of moulds on media prepared without organic nutrients. Trans. Brit. Mycol. Soc. 58: 127–137. https://doi.org/10.1016/S0007-1536(72)80078-0

Tsuji M., Fujiu S., Xiao N., Hanada Y., Kudoh S., Kondo H., Tsuda S., Hoshino T. 2013. Cold adaptation of fungi obtained from soil and lake sediment in the Skarvsnes icefree area, Antarctica. F.E.M.S. Microbiol. Lett. 346 (2): 121–130. https://doi.org/10.1111/1574-6968.12217

Zhdanova N. N. 2013. Мikobiota ukrainskogo Polesya, posledstviya Chernobylskoy katastrofy [Mycobiota of Ukrainian woodland, the consequences of the Chernobyl disaster]. Kiev: 382 p.

Zucconi L., Pagano S., Fenice M., Selbmann L., Tosi S., Onofri S. 1996. Growth temperature preferences of fungal strains from Victoria Land, Antarctica. Polar Biol. 16 (1): 53–61. https://doi.org/10.1007/BF02388735

Zvyagintsev D. V. 1991. Metody pochvennoy mikrobiologii i biokhimii [Methods of soil microbiology and biochemistry]. Moscow: 303 p. (in Russ.).

Vishniac H. S. 1993. The microbiology of Antarctic soils. Antarctic microbiology. New York: 297–341.