Новости систематики низших растений

Том 47

Novitates Systematicae Plantarum Non Vascularium

Томус XLVII

Ботанический институт им. В. Л. Комарова РАН
Санкт-Петербург
2013
 Altogether 244 species of lichen-forming, lichenicolous and non-lichenized fungi are reported from the Smorodinka River Valley, a projected protected natural area (Leningrad Region). *Arthonia biatoricola* Ihlen et Owe-Larss. and *Gyalideopsis alnicola* W. J. Noble et Vězda are reported for the first time for Russia, *Fellhaneropsis myrtillicola* (Erichsen) Séris. et Coppins and *Phaeocalicium flabelliforme* Tibell — for European Russia, *Aspilidea myrinii* (Fr.) Hafellner and *Lepraria borealis* Lohtander et Tønsberg are new to the Leningrad Region, *Gregorella humida* (Kullh.) Lumbsch, *Mycoblastus alpinus* (Fr.) Th. Fr. ex Hellb., *Phaeocalicium populneum* (Brond. ex Duby) Alb. Schmidt and *P. praecedens* (Nyl.) Alb. Schmidt are new to the Western Leningrad Region. The nearest to St. Petersburg locality of *Lobaria pulmonaria* (L.) Hoffm. on Karelian Isthmus has been found in the Smorodinka River Valley.

Keywords: lichens, new records, Leningrad Region, the Smorodinka River Valley, protected natural area.

On the territory of the projected nature reserve «River Valley Smorodinka» (Leningrad Region), 244 species of lichen-forming, lichenicolous and non-lichenized fungi are reported from the Smorodinka River Valley, a projected protected area (Leningrad Region). *Arthonia biatoricola* Ihlen et Owe-Larss. and *Gyalideopsis alnicola* W. J. Noble et Vězda are reported for the first time for Russia, *Fellhaneropsis myrtillicola* (Erichsen) Sérus. et Coppins and *Phaeocalicium flabelliforme* Tibell — for European Russia, *Aspilidea myrinii* (Fr.) Hafellner and *Lepraria borealis* Lohtander et Tønsberg are new to the Leningrad Region, *Gregorella humida* (Kullh.) Lumbsch, *Mycoblastus alpinus* (Fr.) Th. Fr. ex Hellb., *Phaeocalicium populneum* (Brond. ex Duby) Alb. Schmidt and *P. praecedens* (Nyl.) Alb. Schmidt are new to the Western Leningrad Region. The nearest localities to St. Petersburg are found in the Smorodinka River Valley.

Keywords: lichens, new records, Leningrad Region, the Smorodinka River Valley, protected natural area.
The Smorodinka River Valley is located in the central part of Karelian Isthmus, on border of Priozersk and Vsevolozhsk districts of the Leningrad Region. The Smorodinka River together with the inflowing brooks has a deeply dissected river valley with steep bank slopes. Two small lakes are also situated in the river valley. The vegetation is represented mostly by spruce \(Picea abies \) and mixed forests with spruce, aspen \(Populus tremula \) and birch \(Betula pendula \). Pine \(Pinus sylvestris \) stands are rare and present in upland parts only. On the slopes, especially along the brooks, Norway maple \(Acer platanoides \) can be found in mixed forests; on the right (northern) bank in some places the hazel \(Corylus avellana \) undergrowth appears as well. The floodplain is mostly covered by grasslands and swamps, with areas of birch, grey alder \(Alnus incana \) and spruce stands. The upland areas adjacent to the river are covered by managed forests, and on the right bank by meadows in vicinities of former Finnish villages. In Finland the area north of the Smorodinka River belonged to the village Raasuli (now Orekhovo) of the municipality Rautu.

The Smorodinka River (Tungelmanjoki) was a part of the state boundary between the Soviet Union and Finland up to 1940 (Winter War). Probably such a boundary position, as well as the relief characters, is the main reason why this area close to St. Petersburg (40 km north of the city border) still has a relatively intact nature. In the eastern part of the valley, some fragments of old spruce forests still remain. In general on Karelian Isthmus such communities have been destroyed by agriculture and wars. Now the Smorodinka River Valley is projected to become a protected natural area.

The lichens of the Smorodinka River Valley and adjacent territories were never studied before. The only specimen from this area was found in the herbarium of the Botanical Museum of University of Helsinki (H): \textit{Pertusaria amara} (Ach.) Nyl., Smorodinka, in deciduous forest near the bridge, on stem of \textit{Sorbus aucuparia} L., Pentti Alanko, 08.06.2002 (H 8000676). The records of \textit{Cladonia caespiticia}, \textit{Verrucaria dolosa} and several species of lichenicolous fungi were published recently from the area (Pykälä et al., 2012; Himelbrant et al., 2013).

Field studies were carried on in June — August 2011. We investigated the lichen diversity of 21 sample plots (20 × 20 m or within natural limits of plant community) in typical phytocoenoses, and 21 additional samples were taken in different biotopes (additional collecting points). Represen-
tative specimens are mainly deposited in the lichen herbarium of Komarov Botanical Institute RAS (LE). Lichen substances were analyzed by standard techniques of thin-layer chromatography (TLC and HPTLC) using the solvent systems A, B, and C (Orange et al., 2001). WGS 84 system was used for geographical (GPS) coordinates. The lichen nomenclature generally follows Nordin et al. (2011).

Abbreviations and symbols: DH — Dmitry E. Himelbrant, MK — Martin Kukwa, JM — Jurga Motiejūnaitė, IS — Irina S. Stepanchikova, GT — Gulnara M. Tagirdzhanova, # — lichenicolous fungus, (#) — facultatively lichenicolous fungus, + — non-lichenized saprobic fungus, † — habitat specialist, ‡ — indicator species (see Andersson et al., 2009 and discussion below).

Localities. Sample plots:
1 — right (northern) bank of the Smorodinka River, floodplain, southern shore of Parikanjärvi lake, 60°28′52″ N, 30°09′32″ E, Carex spp. — Menyanthes trifoliata L. — Sphagnum spp. raised bog with Betula pubescens and Salix sp. shrubs, IS, 11.06.2011;
2 — right bank, floodplain, between two lakes, 60°29′07″ N, 30°09′19″ E, spruce forest with feather mosses and Vaccinium myrtillus L., IS, 11.06.2011;
3 — right bank, floodplain, northwest of the lakes, 60°29′13″ N, 30°08′38″ E, grassy swamp with Salix spp. shrubs, Betula sp. and dead pines, IS, 11.06.2011;
4 — right bank, 60°29′05″ N, 30°08′06″ E, spruce forest with feather mosses, Vaccinium myrtillus and Sphagnum spp., IS, 12.06.2011;
5 — right bank, 60°29′07″ N, 30°08′08″ E, spruce forest with old aspens, IS, 12.06.2011;
6 — left (southern) bank, upland, 60°27′58″ N, 30°09′22″ E, spruce forest with Betula sp., IS and DH, 15.07.2011;
7 — left bank, upper part of the slope, 60°28′36″ N, 30°08′58″ E, aspen stand with Vaccinium myrtillus, IS and DH, 15.07.2011;
8 — left bank, upland, 60°27′16″ N, 30°11′35″ E, aspen-spruce forest with feather mosses, Oxalis acetosella L. and ferns, IS and GT, 23.08.2011;
9 — right bank, floodplain, 60°27′48″ N, 30°11′14″ E, birch forest with young spruces, IS and GT, 23.08.2011;
10 — right bank, 60°27′47″ N, 30°11′05″ E, aspen-spruce forest with herbs and boulders, IS and GT, 23.08.2011;
11 — right bank, 60°27′43″ N, 30°11′07″ E, open spruce forest with sparse Sorbus aucuparia, IS and GT, 23.08.2011;
12 — left bank, on slope, 60°27′45″ N, 30°10′16″ E, spruce forest with ferns, herbs and abundant maple young growth, IS and GT, 24.08.2011;
13 — left bank, floodplain, 60°28′40″ N, 30°09′04″ E, Eriophorum vaginatum L. — Sphagnum spp. bog with pines and spruces, IS and GT, 24.08.2011;
14 — left bank, floodplain, 60°27′38″ N, 30°11′10″ E, spruce forest with Sphagnum spp. and Vaccinium myrtillus, IS and GT, 25.08.2011;
15 — right bank, floodplain,
Additional collection points: a1 — right bank, southeastern shore of Parikanjärvi lake, 60°28’52” N, 30°09’32” E, raised bog along the lake margin, IS, 11.06.2011; a2 — right bank, northwestern shore of small lake northeast of Parikanjärvi lake, 60°29’15” N, 30°08’49” E, spruce forest with feather mosses, Vaccinium myrtillus, herbs and abundant windfall timber, IS, 11.06.2011; a3 — left bank, 60°28’33” N, 30°11’06” E, middle-aged aspen stand, IS, 12.06.2011; a4 — right bank, floodplain, 60°28’13” N, 30°09’23” E, old birch tree on path in spruce forest near the river, IS and DH, 15.07.2011; a7 — left bank, on slope, 60°27’30” N, 30°10’11” E, boulders in a brook in spruce-birch forest with grey alder, IS, 28.08.2011; a14 — right bank, 60°29’ N, 30°10’ E, ant trail in pine forest, IS, 28.08.2011; a15 — right bank, upland, 60°29’31” N, 30°09’09” E, small pit in the meadow at the place of the former Finnish
village, IS, 29.08.2011; a16 — same locality, 60°29'26" N, 30°09'58" E, boulders, IS, 29.08.2011; a17 — left bank, floodplain, 60°27'38" N, 30°11'10" E, spruce forest, IS and GT, 25.08.2011; a18 — left bank, slope, 60°27'49" N, 30°10'14" E, spruce forest, IS and GT, 24.08.2011; a19 — left bank, upland, 60°27'28" N, 30°10'56" E, boulders on a path in a spruce forest, IS and GT, 24.08.2011; a20 — left bank, lower part of the slope, 60°27'28" N, 30°11'19" E, spruce forest with mosses and herbs, IS and DH, 28.04.2013; a21 — right bank, upland, 60°28'02" N, 30°11'45" E, along the earth-road, IS and DH, 28.04.2013.

Absconditella lignicola Vězda et Pizut — 4, a2, a10; lignum of fallen coniferous trunks.

Acarospora fuscata (Schrad.) Th. Fr. — a16; granite.

Acrocordia cavata (Ach.) R. C. Harris — 20; bark of Populus tremula.

Anaptychia ciliaris (L.) Körb. — 20, a5; bark of Populus tremula.

Anisomeridium polypori (Ellis et Everh.) M. E. Barr — 7, 12, 20; bark of Acer platanoides and Populus tremula.

Arthonia apatetica (A. Massal.) Th. Fr. — 6, 8, 9, 11, 12, 14, 15, 18, 20; bark of Acer platanoides, Alnus incana, Betula sp. and Sorbus aucuparia.

A. biatoricola Ihlen et Owe-Larss. — 2, 6, 8, 14; thalli of Biatora efflorescens on bark of Betula sp., Sorbus aucuparia and Populus tremula. New for Russia. This recently described lichenicolous fungus belongs to the Arthonia radiata group. For a detailed description see Ihlen et al. (2004). The species was previously known from Norway, Sweden and the USA (Alaska).

A. didyma Körb. — 2; bark of Populus tremula.

A. mediella Nyl. — 11, 14, a8; bark of Picea abies.

A. patellulata Nyl. — 5; bark of Populus tremula.

A. punctiformis Ach. — 5, 6; bark of Betula sp. and Populus tremula.

A. radiata (Pers.) Ach. — 5, 8, 15, 18, 20, 21, a17; bark of Alnus incana, Corylus avellana and Sorbus aucuparia, upturned roots.

A. ruana A. Massal. — 9, 10, 14, 15, 17, 20; bark of Alnus incana and Sorbus aucuparia.

A. vinosa Leight. — 12; bark of Picea abies.

Arthrosporum populorum A. Massal. — 5; bark of Populus tremula.

Aspicilia cinerea (L.) Körb. — a16; granite.

As pilidea myrinii (Fr.) Hafellner — a16; granite. New for the Leningrad Region.

Athallia pyracea (Ach.) Arup, Frödén et Sochting [= Caloplaca pyracea (Ach.) Th. Fr.] — 5, 20; bark of Populus tremula.

A. arachnoidea (Berk.) Jülich — 16; on green algae and crustose lichens on bark of Betula sp.

Bacidia arceutina (Ach.) Arnold — 7; bark of Populus tremula.

B. bagliettoana (A. Massal. et De Not.) Jatta — 10; bark of Populus tremula.

B. beckhausii Körb. — 14; bark of Populus tremula.
B. circumspecta (Nyl. ex Vain.) Malme — 18; bark of Sorbus aucuparia.
B. subincompta (Nyl.) Arnold — 2, 5, 7, 8, 10, 12, 18, 20, a3; bark of Acer platanoides and Populus tremula.

Bacidina caligans (Nyl.) Llop et Hlladun — 7, 12; bark of Sorbus aucuparia.
Baeomyces carneus Flörke — a9, a16; granite.
B. rufus (Huds.) Rebent. — a16; granite, soil.
Biatora efflorescens (Hedl.) Räsänen — 2, 4–8, 10–14, 16, 18, 20, 21, a12; bark of Acer platanoides, Alnus incana, Betula spp., Corylus avellana, Padus avium Mill., Picea abies, Populus tremula and Sorbus aucuparia, lignum of Betula sp. and Picea abies. The thalli contain argopsin, norargopsin and two unidentified yellow pigments (TLC).
B. fallax Hepp — 14; bark of Picea abies.
B. helvola Körb. ex Hellb. — 2, 5, 8, 10–12, 14–16, 18, 21; bark of Acer platanoides, Alnus incana, Betula sp., Corylus avellana, Padus avium, Picea abies, Populus tremula and Sorbus aucuparia.
B. ocelliformis (Nyl.) Arnold — 5, 7–12, 14, 16, 18, 20; bark of various deciduous trees, also bark and lignum of Picea abies.
B. sphaeroidiza (Vain.) Printzen et Holien — 10, 14; bark of Alnus incana and Picea abies.

#Biatoropsis usnearum Räsänen — 13; thallus of Usnea substerilis on bark of Betula sp.
Bilimbia microcarpa (Th. Fr.) Th. Fr. — 5; bark of Populus tremula.
Bryoria capillaris (Ach.) Brodo et D. Hawksw. — 2, 4–8, 11–15, 17, 20, a1, a18; bark of Acer platanoides, Betula sp., Picea abies, Populus tremula and Lonicera sp., lignum of Picea abies.
B. fuscescens (Gyeln.) Brodo et D. Hawksw. — 1–3, 7, 12–14, a1, a18; bark of Betula sp., Picea abies, Populus tremula and Salix sp.
B. implexa (Hoffm.) Brodo et D. Hawksw. — 14; bark of Picea abies.
B. subcana (Nyl. ex Stizenb.) Brodo et D. Hawksw. — 1, 2, 4–8, 10–15, a1; bark of Alnus incana, Betula sp., Juniperus communis L., Picea abies and Populus tremula. Protected in the Leningrad Region (Red..., 2000).
Buellia disciformis (Fr.) Mudd — 20; bark of Sorbus aucuparia.
B. erubescens Arnold — 9, 18; bark of Corylus avellana and Sorbus aucuparia.
B. griseovirens (Turner et Borrer ex Sm.) Almb. — 2, 3, 5, 7, 8, 10, 11, 14, 18–20, a12; bark of Alnus incana, Betula spp., Corylus avellana, Picea abies, Populus tremula and Sorbus aucuparia.
Calicium glaucellum Ach. — 3, 12, 13, 21, a8; bark and lignum of Picea abies and Pinus sylvestris.
C. trabinellum (Ach.) Ach. — 3, 10, 12–14, 21, a2; bark, lignum and upturned roots of Picea abies, lignum of Pinus sylvestris.
C. viride Pers. — 5, 14; bark of Picea abies.
Caloplaera cerina (Hedw.) Th. Fr. — 5, 8; bark of Populus tremula.
Catillaria nigroclavata (Nyl.) Schuler — 5, 7; bark of Populus tremula.
Cercidospora epipolytropa (Mudd) Arnold — a16; thallus of Lecanora intricata on granite. Det. JM (Himelbrant et al., 2013).

Cetraria sepincola (Ehrh.) Ach. — 1, 13, 18, a1, a18; bark of Betula sp., Corylus avellana and Picea abies.

Chaenotheca brachypoda (Ach.) Tibell — 5, 8, 10, 16; bark of Sorbus aucuparia, lignum.

Chaenotheca chlorella (Ach.) Müll. Arg. — 12; lignum of Picea abies.

Chaenotheca chrysocephala (Turner ex Ach.) Th. Fr. — 4, 6, 11, 12, 14, a6, a8; bark of Picea abies.

Chaenotheca ferruginea (Turner ex Sm.) Mig. — 2, 4–6, 8, 10–14, 16, 20, 21, a8, a17; bark of Betula sp., Picea abies and Pinus sylvestris, lignum of Juniperus communis, Picea abies and Pinus sylvestris, upturned roots.

Chaenotheca gracilenta (Ach.) J. Mattsson et Middelb. — a6; bark of Betula sp.

Chaenotheca phaeocephala (Turner) Th. Fr. — 14; bark of Picea abies.

Chaenotheca stemonea (Ach.) Müll. Arg. — 12, a6; bark of Betula sp., lignum of Picea abies.

Chaenotheca subroscida (Eitner) Zahlbr. — 14; bark of Picea abies.

Chaenotheca trichialis (Ach.) Th. Fr. — 4–6, 8, 11–15, 21, a2, a8; bark and lignum of Picea abies.

Chaenotheca xyloxena Nádv. — 12, 14; lignum of Picea abies.

Chaenothecopsis consociata (Nádv.) Alb. Schmidt — 11, 14, a8; thalli of Chaenotheca chrysocephala on bark of Picea abies.

Cladina caesiocinerea (Nyl. ex Malbr.) A. Nordin, S. Savić et Tibell — a16; granite.

Cladonia arbuscula (Wallr.) Flot. subsp. beringiana Ahti — 3, 13, a10; old burnt logs, lignum of Pinus sylvestris (stump), upturned roots.

Cladonia bacilliformis (Nyl.) Glück — 2; bark of Betula sp.

Cladonia botrytes (K. G. Hagen) Willd. — 3; upturned roots.

Cladonia caespiticia (Pers.) Flörke — 13; lignum of Pinus sylvestris. Det. JM (Himelbrant et al., 2013).

Cladonia carnea (Fr.) Fr. — 2, 13; bark of Betula sp. and Picea abies.

Cladonia cenotea (Ach.) Schaer. — 2–4, 6–8, 10–15, 17, a17, a18; bark of Alnus incana, Betula sp., Picea abies, Pinus sylvestris and Populus tremula, lignum of Picea abies and Pinus sylvestris, upturned roots.

Cladonia chlorophaea (Flörke ex Sommerf.) Spreng. s. l. — 2–4, 6–8, 10, 12, 14, 16, 18, 20; bark of Acer platanoides, Alnus incana, Betula sp., Picea abies and Populus tremula, lignum, upturned roots.
C. *coniocraea* (Flörke) Spreng. — 2–18, 20, 21, a2, a10, a12, a16–18; bark of various trees, lignum, upturned roots and primary soil on boulders.

C. *cornuta* (L.) Hoffm. ssp. *cornuta* — 3, 4, 7, a18; bark of Betula sp. and *Populus tremula*, upturned roots.

C. *crispata* (Ach.) Flot. — 2–4, 6, 7, 10–14, 16, 20, 21, a10, a17; bark of Betula sp., *Picea abies*, *Pinus sylvestris* and *Populus tremula*, lignum of conifers, upturned roots.

C. *digitata* (L.) Hoffm. — 2, 3, 13, a18; bark of Betula sp., *Populus tremula*, lignum of Pinus sylvestris, upturned roots.

C. *fimbriata* (L.) Fr. — 3, 5, 10, 13–16, 21, a16–18; bark of Betula sp., *Picea abies*, *Pinus sylvestris*, *Salix sp.* and *Sorbus aucuparia*, lignum of conifers, upturned roots, granite.

C. *macilenta* Hoffm. — 3; upturned roots.

C. *ochrochlora* Flörke — 3; upturned roots.

C. *rangiferina* (L.) F. H. Wigg. — 3, 13, a10; old burnt logs, lignum of *Pinus sylvestris* and upturned roots.

C. *rei* Schae. — 3; upturned roots.

C. *sulphurina* (Michx.) Fr. — 4, 5, 13, 21; bark of Betula sp. and *Pinus sylvestris*, lignum of *Picea abies* and *Pinus sylvestris*.

Cliostomum leprosum (Räsänen) Holien et Tønsberg — 14, a8; bark of *Picea abies*.

Coenogonium pineti (Schrad. ex Ach.) Lücking et Lumbsch — 4, 6, 12, 16, 17, 21, a3, a12; bark of Betula sp., *Picea abies*, *Pinus sylvestris* and *Populus tremula*, branches of Vaccinium myrtillus, lignum of *Picea abies*, plant debris and soil.

Collema furfuraceum (Arnold) Du Rietz — 5; bark of *Populus tremula*. Protected in the Leningrad Region (Red..., 2000).

C. occultatum Bagl. — a3; bark of *Populus tremula*.

C. occidentale Bagl. — a3; bark of *Populus tremula*.

C. occultatum Bagl. — a3; bark of *Populus tremula*.

Cornutispora lichenicola D. Hawksw. et B. Sutton — a16; thallus of *Parnelia saxatilis* on granite. Det. JM (Himelbrant et al., 2013).

Evernia mesomorpha Nyl. — 13; bark of *Picea abies*.

E. prunastri (L.) Ach. — 2, 5, 15; bark of *Picea abies* and *Salix sp.*

Fellhanera subtilis (Vězda) Diederich et Serus. — 14, 20; bark (twigs) and needles of *Picea abies*.

Fellhaneropsis myrtilloidea (Erichsen) Sérs. et Coppins — 14, 20; bark (twigs) and needles of *Picea abies*. New for European Russia. Characterized by grey-green crustose thallus, small greyish or brownish biatorine apothecia, hypothecium green in KOH, 4(6)-celled spores and occurrence on leaves of evergreen plants and twigs of conifers (Handbook..., 2008). Previously known from Russian Caucasus, Europe and Macaronesia (Handbook..., 2008; Nordin et al., 2011).

Fusidia arboricola Coppins et Tønsberg — 8; lignum of *Picea abies*. Thallus contains fumarprotocetraric acid.
F. pusilla Tønsberg — 2–15, 17–21, a12, a18; bark of Betula sp., Corylus avellana, Padus avium, Picea abies and Sorbus aucuparia, lignum of conifers. Thalli contain divaricatic acid.

Graphis scripta (L.) Ach. — 6, 8, 10, 17, 18, 20, a12, a17; bark of Alnus incana, Corylus avellana, Padus avium and Sorbus aucuparia, lignum of Salix sp., upturned roots.

Gregorella humida (Kullh.) Lumbsch — a15; soil. New for the Western Leningrad Region.

Gyalideopsis alnicola W. J. Noble et Vězda — 14; bark of Picea abies twigs. New for Russia. The species is closely related to G. piceicola (Nyl.) Vězda et Poelt and differs by larger apothecia (up to 0.6 mm in diam.) only. For description see Vězda (1979) and Handbook of lichens of Russia (2008). Previously known from Norway and Canada (British Columbia).

Gyalolechia flavorubescens (Huds.) Sochting, Frödén et Arup [= Caloplaca flavorubescens (Huds.) J. R. Laundon] — 5, 7, 10, 20; bark of Populus tremula.

Hypocenomyce caradocensis (Leight. ex Nyl.) P. James et Gotth. Schneid. — 13; lignum of Pinus sylvestris.

H. scalaris (Ach.) M. Choisy — 6, 10, 13, 14, 20, 21; bark of Betula sp., Picea abies, Pinus sylvestris and Lonicera sp., lignum of Pinus sylvestris.

Hypogymnia physodes (L.) Nyl. — 1–21, a1, a12, a16–18; bark and lignum of different trees and shrubs, granite, upturned roots.

H. tubulosa (Schaer.) Hav. — 1–15, 17–21, a1, a12, a18; bark of different trees and shrubs, lignum of conifers.

Imshaugia aleurites (Ach.) S. L. F. Meyer — 13; bark of Picea abies.

Japewia subaurifera Muhr et Tønsberg — 3, 4, 8, 9, 12, 14, 15, 17; bark of Betula sp., Picea abies and Sorbus aucuparia, lignum of Picea abies. Thalli contain secalonic acids.

Lecania cyrtella (Ach.) Th. Fr. — 5, 18, 19; bark of Populus tremula, Salix sp. and Sorbus aucuparia.

L. cyrtellina (Nyl.) Sandst. — 12; bark of Acer platanoides.

L. naegelii (Hepp) Diederich et Van den Boom — 5, 8; bark of Populus tremula.

Lecanora alophana Nyl. — 2, 5, 7, 20; bark of Populus tremula.

L. argentata (Ach.) Malme — 10; bark of Padus avium.

L. cadubriae (A. Massal.) Hedl. — a2; lignum of Picea abies.

L. carpinea (L.) Vain. — 1, 5, 8, 10, 12, 15, 18, 20, 21; bark of Acer platanoides, Alnus incana, Populus tremula, Salix sp. and Sorbus aucuparia.

L. chlorotera Nyl. — 1, 2, 5, 8–10, 12, 15, 18, 19; bark of Acer platanoides, Alnus incana, Betula sp., Padus avium, Picea abies, Populus tremula, Salix sp. and Sorbus aucuparia.

L. hagenii (Ach.) Ach. — 5, 8; bark of Populus tremula.
L. hypopta (Ach.) Vain. — 13, 19; bark of Betula sp., lignum of Pinus sylvestris.
L. intricata (Ach.) Ach. — a16; granite.
L. pulicaris (Pers.) Ach. — 1, 3, 4, 6, 9, 11, 13–15, 17, 19–21, a12; bark of Alnus incana, Betula sp., Corylus avellana, Picea abies and Sorbus aucuparia.
L. saxicola (Pollich) Ach. — a16; granite.
L. subintricata (Nyl.) Th. Fr. — 2; lignum of Picea abies.
L. subrugosa Nyl. — 5, 8, 10; bark of Populus tremula.
L. symnicta (Ach.) Ach. — 1, 3, 5, 6, 8, 12, 13, 15, 18, 19, a2; bark of Alnus incana, Betula sp., Picea abies, Pinus sylvestris and Sorbus aucuparia, lignum of Picea abies.
L. saxicola (Pollich) Ach. — a16; granite.
L. subintricata (Nyl.) Th. Fr. — 2; lignum of Picea abies.
L. subrugosa Nyl. — 5, 8, 10; bark of Populus tremula.
L. symnicta (Ach.) Ach. — 1, 3, 5, 6, 8, 12, 13, 15, 18, 19, a2; bark of Alnus incana, Betula sp., Picea abies, Pinus sylvestris and Sorbus aucuparia, lignum of Picea abies.

Lecidea erythrophaea Flörke ex Sommerf. — 7, 8, 10, 12, 14; bark of Acer platanoides, Populus tremula and Sorbus aucuparia.
L. leprarioides Tønsberg — 2, 4, 12, 14, a8; bark and lignum of Picea abies.
L. nylanderi (Anzi) Th. Fr. — 1, 2, 4, 7–10, 12–16, 18, 20, 21, a2, a18; bark of Alnus incana, Betula sp., Corylus avellana, Picea abies, Pinus sylvestris and Sorbus aucuparia, lignum of Betula sp., Picea abies and Pinus sylvestris.
L. pullata (Norman) Th. Fr. — 13; bark of Betula sp.
L. turgidula Fr. — 2–4, 7, 13–15, 17, 21, a2; bark and lignum of conifers.
Lecidella elaeochroma (Ach.) M. Choisy — 2, 5, 7, 8, 20; bark of Populus tremula.

L. eburnea J. R. Laundon — 17; mosses. Thallus contains alectorialic acid and protocetraric acid.
L. leprarioides Tønsberg — 2, 4, 8–10, 12–14, 16, 17, 20, 21, a9, a13; bark of Alnus incana, Betula sp., Picea abies, Pinus sylvestris and Sorbus aucuparia, lignum of Betula sp. and Picea abies, granite.
L. incana (L.) Ach. — 2–6, 8, 10–12, 14, 15, 18, 20; bark of Alnus incana, Betula sp., Juniperus communis, Padus avium, Picea abies and Sorbus aucuparia, lignum of Picea abies, upturned roots.
L. jackii Tønsberg — 2–10, 13–18, 20, 21, a8; bark of Alnus incana, Betula sp., Corylus avellana, Juniperus communis, Picea abies, Pinus sylvestris and Populus tremula, lignum of conifers, mosses. Thallus contain atranorin, jackinic/rangiformic and roccellic acids.
L. lobifrons Nyl. — 6, 7, 10, 12, 18; bark of Acer platanoides, Corylus avellana, Picea abies and Sorbus aucuparia, granite.
L. neglecta (Nyl.) Lettau — a16; mosses and granite. Thallus contains alectorialic acid.
Leptogium saturninum (Dicks.) Nyl. — 7; bark of Populus tremula.
L. teretiusculum (Wallr.) Arnold — 7, 10, 12; bark of Acer platanoides and Populus tremula.
+Leptorhaphis atomaria (Ach.) Szatala — 3, 10; bark of Populus tremula.
L. epidermidis (Ach.) Th. Fr. — 1, 3, 14, 15, 19, a18; bark of Betula sp.

Lobaria pulmonaria (L.) Hoffm. — 8, a4; bark of Salix sp. and Sorbus aucuparia. Protected in Russian Federation (Red..., 2008) and the Leningrad Region (Red..., 2000).

Loxospora elatina (Ach.) A. Massal. — 2; bark of Betula sp. Thallus contains thamnolic and elatinic acids.

Melanelixia fuliginosa (Fr. ex Duby) O. Blanco et al. — 15; bark of Picea abies.

Melanohalea exasperata (De Not.) O. Blanco et al. — 5, 7, 8; bark of Populus tremula.

M. exasperatula (Nyl.) O. Blanco et al. — 6–8, a12; bark of Corylus avellana and Populus tremula, twigs of Picea abies.

M. olivacea (L.) O. Blanco et al. — 1, 3, 5, 10, 15, 20, a1; bark of Betula sp., Padus avium, Picea abies, Populus tremula and Salix sp.

M. denigrata (Fr.) Hedl. — 21; bark of Pinus sylvestris.

M. erratica (Körb.) Hertel, Rambold et Pietschm. — a9, a16; granite.

M. lithinella (Nyl.) Hedl. — a13; granite.

M. melaena (Nyl.) Hedl. — 6, 13, 14; bark of Betula sp., lignum of Pinus sylvestris.

M. misella (Nyl.) Hedl. — a2, a8; bark and lignum of Picea abies.

M. prasina Fr. s. l. — 1–12, 15, 16, 18, 20, 21, a12, a14; bark of Alnus incana, Betula sp., Corylus avellana, Picea abies, Populus tremula, Salix sp., Sorbus aucuparia and Vaccinium myrtillus, lignum of Picea abies, soil. One specimen (Micarea prasina s. str., 20; bark of Picea abies) was analyzed by HPTLC, micareic acid was detected in its thallus.

M. sylvicola (Flot.) Vězda et V. Wirth — a7, a9; bark of Picea abies, iron.

+Microcalicium arenarium (Hampe ex A. Massal.) Tibell — 12, 14, a17; upturned roots.

+M. disseminatum (Ach.) Vain. — 14, a8; bark of Picea abies.

Montanelia sorediata (Ach.) Divakar et al. — a16; granite. Protected in the Leningrad Region (Red..., 2000).

Mycobilimbia carneoalbida (Müll. Arg.) Printzen — 5, 7, 8, 14, 20; bark of Populus tremula and Sorbus aucuparia.

M. epixanthoides (Nyl.) Vitik. et al. ex. Hafellner et Türk — 2, 5, 7, 8, 10; bark of Betula sp., Populus tremula and Sorbus aucuparia, mosses.

M. tetramera (De Not.) Vitik. et al. ex Hafellner et Türk — 7, 10; bark of Populus tremula.

Mycoblastus alpinus (Fr.) Th. Fr. ex Hellb. — 2; bark of Betula sp. Det. MK. Thallus contains atranorin, usnic and planaic acids. New for the Western Leningrad Region.

M. sanguinarius (L.) Norman — 2; bark of Betula sp.

+Mycocalicium subtile (Pers.) Szatala — 3, 5, 11–14, 17, 21, a2; bark of Picea abies, lignum of Betula sp., Picea abies and Pinus sylvestris.

+Naetrocymbe rhyponta (Ach.) R. C. Harris — 5; bark of Populus tremula.
Nephroma parile (Ach.) Ach. — a4, a20; bark of Salix sp. and Sorbus aucuparia.

Ochrolechia alboflavescens (Wulfen) Zahlbr. — 12, 14; bark of Populus tremula, lignum of Picea abies. The specimens contain variolaric, lichesterinic, protolichesterinic acids and unknown substances called microstictoides unknowns (see Kukwa, 2011).

O. androgyna (Hoffm.) Arnold s. str. — 7; bark of Betula sp., bark of Populus tremula. Thallus contains gyrophoric, lecanoric acids and fatty acids called androgyna B-unknowns (see Kukwa, 2011).

O. bahusiensis H. Magn. — 4; bark of Betula sp. Det. MK. Thallus contains gyrophoric, lecanoric acids and murolic acid complex.

O. mahlensis Räsänen — 2, 10, 14, 15; bark of Alnus incana, Betula sp., Padus avium and Picea abies. The specimens contain gyrophoric and lecanoric acids.

O. microstictoides Räsänen — 2, 4, 12–14, 16; bark of Betula sp., bark and lignum of Picea abies. The specimens contain variolaric, lichesterinic acids and microstictoides unknowns (see Kukwa, 2011).

Pachyphiale fagicola (Hepp) Zwackh — 5, 20; bark of Populus tremula and Sorbus aucuparia.

Parmelia saxatilis (L.) Ach. — a16; granite.

P. sulcata Taylor — 1, 2, 4–10, 12, 14, 15, 18, 20, 21, a1, a12; bark of Acer platanoides, Alnus incana, Betula sp., Corylus avellana, Padus avium, Picea abies, Populus tremula, Salix sp. and Sorbus aucuparia.

Parmeliella triptophylla (Ach.) Müll. Arg. — a3; bark of Populus tremula. Protected in the Leningrad Region (Red...2000).

Parmeliopsis ambigua (Wulfen) Nyl. — 2–21, a1, a17, a18; bark of various trees and shrubs, lignum, upturned roots.

P. hyperopta (Ach.) Arnold — 2, 4, 6–8, 10, 12–14, 16, 18, 20, 21, a18; bark of Betula sp., Picea abies, Pinus sylvestris and Populus tremula, lignum of Pinus sylvestris.

Peltigera canina (L.) Willd. — 7, 10; bark of Populus tremula, mosses.

P. neopolydactyla (Gyeln.) Gyeln. — 12, a8, a19; bark of Acer platanoides, granite, primary soil on boulders.

P. polydactylon (Neck.) Hoffm. — a6; granite, primary soil on boulders.

P. praetextata (Flörke ex Sommerf.) Zopf — 5, 7, 8, 10–12, 15, 20; bark of Acer platanoides, Populus tremula, Salix sp. and Sorbus aucuparia, lignum.

Peridiothelia fuliguncta (Norman) D. Hawksw. — a6; bark of Betula sp.

Pertusaria amara (Ach.) Nyl. — 2, 7, 8, 10, 14; bark of Populus tremula and Sorbus aucuparia.

P. carneopallida (Nyl.) Anzi — 5, 12, 17, 18, 20, 21; bark of Corylus avellana and Sorbus aucuparia.

P. pupillaris (Nyl.) Th. Fr. s. l. — 8, 10, 11, 15, 18, 20; bark of Alnus incana, Corylus avellana, Padus avium and Sorbus aucuparia. Thalli contain fumarprotocetraric acid.
Phaeocalicium flabelliforme Tibell — 1; bark of *Betula* sp. dead twigs. New for European Russia. Characterized by compressed apothecia, two-septate brown spores 12–14 × 4–5 μm with weakly pigmented septum and occurrence on thin dead branches of birch in moderately humid habitats (Tibell, 1999; Titov et al., 2004). Rare species previously known from Sweden, North America and Russia (Kamchatka).

P. populneum (Brond. ex Duby) Alb. Schmidt — 5, 20; bark of *Populus tremula* (twigs). New for the Western Leningrad Region.

P. praecedens (Nyl.) Alb. Schmidt — 7; bark of *Populus tremula* (twigs). New for the Western Leningrad Region.

Phaeophyscia ciliata (Hoffm.) Moberg — 5, 8; bark of *Populus tremula*.

P. sciastra (Ach.) Moberg — 5; bark of *Populus tremula*.

Phlyctis argena (Spreng.) Flot. — 2, 5, 7, 10–12, 14, 15, 18, 20, 21, a12; bark of various deciduous trees and *Picea abies*.

Physcia adscendens H. Olivier — 5; bark of *Picea abies*, *Salix* sp. and *Sorbus aucuparia*.

P. aipolia (Ehrh. ex Humb.) Fürnr. — 2, 5, 7, 15, 20; bark of *Populus tremula*, *Salix* sp. and *Sorbus aucuparia*.

P. alnophila (Vain.) Lohtander et al. — 2, 5, 8; bark of *Populus tremula*.

P. caesia (Hoffm.) Fürnr. — a16; granite.

P. tenella (Scop.) DC. — 8, 12, 20; bark of *Acer platanoides*, *Populus tremula* and *Sorbus aucuparia*.

Physconia distorta (With.) J. R. Laundon — 5, 7; bark of *Populus tremula*.

Placynthiella dasaea (Stirt.) Tønsberg — 2, 4, 10, 11, 16–18, 20, 21, a10, a14, a17; bark of *Alnus incana*, *Betula* sp., *Padus avium* and *Picea abies*, lignum and soil.

P. icmalea (Ach.) Coppins et P. James — 4, 8, 10, 12, 14, 15, 17, 18, a2, a9, a18; bark of *Betula* sp., *Picea abies*, lignum of *Betula* sp., *Picea abies*, and *Salix* sp., soil and primary soil on boulders.

P. uliginosa (Schrad.) Coppins et P. James — 3, 7, a12; bark of *Populus tremula*, plant debris, upturned roots.

Platismatia glauca (L.) W. L. Culb. et C. F. Culb. — 1–18, 20, 21, a1, a17, a18; bark of various trees, lignum of *Betula* sp. and conifers.

Polycauliona polycarpa (Hoffm.) Frödén, Arup et Sæchting [= *Xanthoria polycarpa* (Hoffm.) Th. Fr. ex Rieber] — a21; bark of *Salix* sp.

Porpidia crustulata (Ach.) Hertel et Knoph — 16, a9; granite.

P. macrocarpa (DC.) Hertel et A. J. Schwab — 10; granite.

P. sorediodes (Lamy ex Nyl.) J. R. Laundon — a13; granite. Thallus contains stictic and constictic acids.

Pseudevernia furfuracea (L.) Zopf — 2, 4–7, 13, 20, 21, a1; bark of *Picea abies*, *Pinus sylvestris* and *Populus tremula*.

Psilolechia clavulifera (Nyl.) Coppins — 12, 14, 21, a17; bark of *Pinus sylvestris*, lignum of *Picea abies*, upturned roots.

Pycnora leucoocca (R. Sant.) R. Sant. — 7, 9, 20; bark of *Alnus incana*, *Betula* sp. and *Populus tremula*.
Ramalina farinacea (L.) Ach. — 8, 20; bark of *Alnus incana* and *Populus tremula*.

R. fraxinea (L.) Ach. — 7; bark of *Populus tremula*. Protected in the Lenin-grad Region (Red..., 2000).

Rhizocarpon cinereonigrum Vain. — a16; granite.

R. distinctum Th. Fr. — a16; granite.

R. eupetraeum (Nyl.) Arnold — a10, a16; granite.

R. intersitum Arnold — a10, a16; granite.

R. lavatum (Fr.) Hazsl. — a13; granite.

R. reductum Th. Fr. — a16; granite.

Rinodina degeliana Coppins — 10, 14, 18; bark of *Alnus incana* and *Corylus avellana*.

R. pyrina (Ach.) Arnold — 5; bark of *Populus tremula*.

Ropalospora viridis (Tønsberg) Tønsberg — 2, 5, 10, 14, 15, 20, 21; bark of *Alnus incana*, *Picea abies*, *Populus tremula* and *Sorbus aucuparia*. Thalli contain perlatolic acid.

+Sarea difformis* (Fr.) Fr. — 2, 13, 16; resin of *Picea abies*.

Scoliciosporum chlorococcum (Graewe ex Stenh.) Vězda — 2, 3, 6, 10, 14, 16; bark of *Betula sp.*, *Picea abies* and *Sorbus aucuparia*, lignum of *Pinus sylvestris*.

S. sarothamni (Vain.) Vězda — 3, 5, 8, 18, 20, 21; bark of *Alnus incana*, *Betula sp.*, *Padus avium*, *Populus tremula* and *Sorbus aucuparia*.

S. umbrinum (Ach.) Arnold — a16; granite.

Steinia geophana (Nyl.) Stein — a15; soil.

+**Stenocybe pullatula** (Ach.) Stein — 3, 10, 15, 18; bark of *Alnus incana* and once *Sorbus aucuparia*.

Stereocaulon alpinum Laurer — a16; granite.

S. saxatile H. Magn. — a16; granite.

#**Syzygospora** cf. *bachmannii* Diederich et M. S. Christ. — 7; thallus of *Cladonia coniocraea* on bark of *Populus tremula*. Det. JM (Himelbrant et al., 2013).

#**S. physciacearum** Diederich — 2, 5; thallus of *Physcia aipolia* on bark of *Populus tremula*. Det. JM (Himelbrant et al., 2013).

Thelocarpon superellum Nyl. — 14; lignum of *Picea abies*.

Trapelia involuta (Taylor) Hertel — a9; granite.

T. placodoides Coppins et P. James — a16; granite.

Trapeliopsis flexuosa (Fr.) Coppins et P. James — 1, 3, 13, a1, a2, a10; bark of *Betula sp.*, *Pinus sylvestris*, lignum of *Picea abies*, old burnt logs and upturned roots.

#**Tremella cladoniae** Diederich et M. S. Christ. — 2, 4, 9; thalli of *Cladonia coniocraea* on bark of *Betula spp*. Det. MK, JM (Himelbrant et al., 2013).

#**T. lichenicola** Diederich — 4, 8–10, 12, 14; on thalli of *Violella fucata* on bark of *Alnus incana*, *Betula sp.* and lignum of *Picea abies*.

Tuckermannopsis chlorophylla (Willd.) Hale — 2–8, 10–15, 18, 20, 21, a1, a18; bark of *Acer platanoides*, *Betula sp.*, *Lonicera sp.*, *Picea abies*, *Populus tremula* and *Salix sp.*
Usnea dasypoga (Ach.) Nyl. — 2, 12–14; bark of Picea abies, lignum of Pinus sylvestris.

U. diplotypus Vain. — 13, 14; bark of Picea abies.

U. hirta (L.) F. H. Wigg. — 13; bark of Picea abies.

U. subfloridana Stirt. — 1, 14; bark of Betula sp., Picea abies and Salix sp.

U. substerilis Motyka — 13; bark of Betula sp.

Violella fucata (Stirt.) T. Sprib. — 2, 4, 7–10, 12, 14, 15, 18, 20, 21; bark of Alnus incana, Betula sp., Corylus avellana, Picea abies, Pinus sylvestris and Sorbus aucuparia, lignum of Picea abies. Thalli contain atranorin and fumarprotocetraric acid.

Vulpicida pinastri (Scop.) J.-E. Mattsson et M. J. Lai — 1, 3–15, 17–21, a1, a2, a17, a18; bark of various trees and lignum of conifers.

Xanthoparmelia conspersa (Ach.) Hale — a16; granite.

Xanthoria parietina (L.) Th. Fr. — 5, 7, 20; bark of Populus tremula.

Xylographa parallela (Ach.: Fr.) Fr. — 4; lignum of Picea abies.

The list of lichens and allied fungi of the Smorodinka River Valley and adjacent area comprises 244 species, including 218 lichenized, 12 lichenicolous and 14 saprobic fungi related to lichens. Arthonia biatoricola and Gyalideopsis alnicola are new for Russia, Fellhaneropsis myrtlicola and Phaeocalicium flabelliforme — for European Russia, Aspilidea myriini and Lepraria borealis — for the Leningrad Region, Gregorella humida, Mycoblastus alpinus, Phaeocalicium populneum and P. praecedens are recorded for the first time in the Western Leningrad Region. Six species are protected in the Leningrad Region (Red..., 2000): Bryoria subcana, Collena furfuraceum, Lobaria pulmonaria, Montanelia sorediata, Parmeliella triptophylla and Ramalina fraxinea. Among them, Lobaria pulmonaria is protected in the whole Russian Federation (Red..., 2008) as well. The locality of Lobaria pulmonaria in the Smorodinka River Valley is the nearest to St. Petersburg on Karelian Isthmus and nowadays is the only locality of this widely disappearing species in the central part of Karelian Isthmus.

The lichen diversity of the Smorodinka River Valley is high in comparison to the nearest studied areas: 190 species only are known from Sestoretskaya Lowland, 211 species were recorded in Schuchye Lake protected area and surroundings, and 248 species are included in the preliminary lichen list of Gladyshevsky protected area (Himelbrant et al., in prep.). Rather high diversity of species on this territory is a result of the landscape characters discussed above. The composition of the lichen flora of the Smorodinka River Valley reflects a relatively undisturbed nature of the investigated area. Unusually rich (especially for the area situated in

276
surroundings of a big city) is the stated diversity of calcicoid lichens and fungi — altogether 25 species (10.2 % of the lichen flora) from the genera *Calicium*, *Chaenotheca*, *Chaenothecopsis*, *Micocalicium*, *Microcalicium*, *Phaeocalicium* and *Stenocybe* were found, including rare species confined to old-growth spruce forests, such as *Chaenotheca phaeocephala* and *C. subroscida*. Nineteen species of lichens and allied fungi found in the Smorodinka River Valley represent strict habitat specialists or indicator species of biologically valuable forests in the southern taiga of the North-Western European Russia (Andersson et al., 2009).

Of 244 species, 178 (73.0 %) were recorded on bark of trees, 66 (27.0 %) on lignum, 39 (16.0 %) on stones, 28 (11.5 %) on upturned roots, only 11 (4.5 %) on soil and plant debris and 11 (4.5 %) are lichenicolous fungi (also several species inhabiting mosses, iron or resin). The richest phorophytes are *Populus tremula* (87 epiphytes, 35.7 % of the lichen flora), *Picea abies* (77 species, 31.6 %) and *Betula* spp. (73 species, 29.9 %). High diversity of spruce and aspen epiphytes reflects the prevalence of spruce forests with aspen in the valley. At the same time, the diversity of epigeic lichens is low, first of all because pine forests are almost missing in the investigated area.

In general, the lichen diversity of the Smorodinka River Valley, as well as the territory itself, is rich and very interesting. This area gives shelter to rare and endangered species and definitely deserves special protection.

The authors would like to thank M. Kukwa (Gdansk, Poland), J. Motiejūnaitė (Vilnius, Lithuania) and J. Pykälä (Helsinki, Finland) who helped us to identify selected specimens. Our warm thanks are also due to E. V. Agafonova and V. Yu. Schakhnazaraova (St. Petersburg) who participated in the field trips. We wish to express our sincere gratitude to the reviewer for corrections and valuable comments. The study was supported by Russian Foundation for Basic Research (grant 11-04-00901) and by the Program of Basic Research of the Presidium of RAS «Wildlife: Current Status and Problems of Development».

References